

DISCIAIMER

본 자료는 ㈜코스텍시스(이하 '회사')의 경영실적 및 재무성과와 관련한 정보를 기업회계기준 및 한국채택국제회계기준에 따라 작성한 것입니다. 또한 향후 매출 계획 등 미래와 관련된 예측정보를 포함하고 있으며, 이는 과거 사실이 아닌 미래의 전망에 기초한 것입니다. 본 자료에는 "예상", "전망", "계획", "기대" 등의 표현이 사용될 수 있으며, 이는 경영환경의 변화에 따라 실제 결과와 차이가 발생할 수 있습니다.

특히 시장환경의 급격한 변화, 투자환경의 변동, 회사의 전략적 의사결정에 따라 본 자료의 내용은 실제 경영성과와 상이할 수 있습니다. 따라서 투자자는 본 자료만을 근거로 판단하기보다 반드시 회사의 공시자료 및 투자설명서를 함께 참고해야 하며, 본 자료의 어떠한 내용도 투자자의 투자 결과에 대해 법적 책임을 지지 않습니다.

Table of Contents

1. Company Overview

- 1-1. Company Profile
- 1-2. Financial Summary
- 1-3. 최근 주요 이슈 사항

2. Market Trend

- 2-1. 세계 SiC, GaN 전력반도체 시장 전망(2025~2030)
- 2-2. 전력반도체 냉각(방열) 최신 트렌드
- 2-3. Block Bonding: 전력반도체 차세대 패키징 기술 표준
- 2-4. Block Bonding 적용 전력반도체 : DSC(양면 냉각) 파워 모듈
- 2-5. Block Bonding 적용 전력반도체 : QFN 파워 모듈

3. Product Portfolio

- 3-1. 저 열팽창 고방열 소재 기술
- 3-2. Product Lineup
- ① 5G 통신 ,우주항공, 레이더
- ② 차세대 전력반도체
- ③ 레이저 반도체
- ④ 신규 개발 제품

4. Growth Strategies

- 4-1. 턴어라운드 및 재무 목표
- 4-2. 양산 설비 및 Capa. 증설 계획
- 4-3. Product Roadmap

5. Summary

1-1. Company Profile

28년의 축적된 기술력, 세계 시장 중심으로 도약!

O 회사 개요

회사명	㈜코스텍시스	자본금	38.5억 원
설립일	1997년 1월 8일	종업원수	80명
대표이사	한규진	매출규모	142억 원(2024년)
주요사업	저열팽창·고방열 신소재 기반 반도체 패키징 솔루션 제조·판매 (RF 통신, 전력반도체, 레이저 등)	기타사항	KOSDAQ 상장(2023년 4월) 벤처·이노비즈 인증 등
주요 매출처	NXP, INN, Dynax, 현대자동차 등	위치	인천광역시 남동 국가산업단지

주요 경영진

성명	직책	담당	주요 경력
한규진	대표이사	경영 총괄	- 국민대학교 기계공학 학사 - 기아자동차 중앙연구소 - 現 코스텍시스 대표이사
박찬호	상무이사	영업 총괄	- 인하대학교 중국어과 학사 - 동양이글피쳐 마케팅부 - 現 코스텍시스 상무이사
이승주	상무이사	재무 총괄	- 조선대학교 회계학 학사 - BYC 재경팀 - 現 코스텍시스 상무이사
한태성	이사, 연구소장	기술 개발	- 인하대학교 전자공학과 - LG 디스플레이 기술연구소 - 現 코스텍시스 기술연구소장
허만인	전무이사	생산 총괄	- 국민대학교 기계설계 학사 - 만도기계 기술 연구소 - 現 코스텍시스 전무이사

인천광역시 남동구 논현동 428-4 / 대지(3,294m²), 건평(4,526m²)

인천광역시 남동구 논현동 429-12 / 대지(3,308m²), 건평(3,361m²)

1-2. Financial Summary

Q 요약 재무상태표

(단위: 백만원)

Q 요약 손익계산서

(단위: 백만원)

과 목	FY2022	FY2023	FY2024	FY25-2Qr
유동자산	12,733	15,006	16,319	14,036
비유동자산	22,585	22,783	23,636	23,690
자산총계	35,318	37,789	39,956	37,726
유동부채	11,864	1,352	7,520	7,085
비유동부채	14,020	10,578	9,866	9,191
부채총계	25,883	11,931	17,387	16,276
자본금	2,180	3,760	3,898	3,899
자본잉여금	3,839	12,777	14,224	14,225
이익잉여금 (결손금)	(900)	5,000	3,108	2,283
자본 총계	9,435	25,858	22,568	21,451

과 목	FY2022	FY2023	FY2024	FY25-2Qr
매출액	25,352	11,549	14,213	6,513
매출원가	20,135	10,614	13,955	6,253
매출총이익	5,217	934	258	260
판매비와 관리비	1,676	2,254	2,152	995
영업이익	3,574	(1,319)	(1,894)	(735)
영업 외 수익	1,239	1,135	553	100
영업 외 비용	_{주1)} 6,193	_{주2)} 10,854	473	404
법인세 차감 전 순이익	(1,379)	(11,038)	(1,814)	(1,040)
법인세 비용 (수익)	(300)	340	(20)	(216)
당기순이익	_{주1)} 1,079)	_{至2)} (11,379)	(1,794)	(824)

주1) 파생상품(CB)평가손실(52억) 반영 주2) 파생상품(CB)평가손실(30억) 합병비용(55억) 반영

1-3. 최근 주요 이슈 사항

1) 최대주주 변경: 2025.04.16

- 한규진(前 최대주주) → 한태성(現 최대주주)로 변경
- 가업 승계에 따른 2,100,000주 증여(5년간 매매 제한)
- ☞ 장기적 지배구조 안정화 및 차세대 경영시스템 구축 완료

2) 공시/보도 해명: 2025.07.16

- 594억 원 규모 공급계약 보도 사안 해명
- ☞ 대규모 계약 관련 리스크 투명 관리 확인

3) 유형자산 양수 결정: 2025.07.18

- 인천광역시 남동구 논현동 429-12 토지·건물 양수 (대지 3,308m², 건평 3,361m²)
- 양수금액: 139.5억 원(자산총액 대비 34.9%)
- 목적 : 방열 스페이서 대량 생산 체계 구축 및 공장 역할 분할(생산 효율과 품질 강화)
 - -. HQ & KOSTEC Tech Center: 본사 및 소재 전문 연구/생산 기지로 기능 전문화
 - -. Power Package MegaFab : 스페이서·패키징 부품 대량 생산
- ☞ 기대효과 : 가동률↑,고정비↓,영업이익↑

4) 교환사채권 발행 결정: 2025.07.22

- 발행 규모: 63.5억 원 / 교환 가격: 14,351원
- 자금 용도 : 방열 스페이서 전용 생산라인 구축
- ☞ 양산·성장 가속을 위한 전략적 자금 조달 완료

Table of Contents

1. Company Overview

- 1-1. Company Profile
- 1-2. Financial Summary
- 1-3. 최근 주요 이슈 사항

2. Market Trend

- 2-1. 세계 SiC, GaN 전력반도체 시장 전망(2025~2030)
- 2-2. 전력반도체 냉각(방열) 최신 트렌드
- 2-3. Block Bonding: 전력반도체 차세대 패키징 기술 표준
- 2-4. Block Bonding 적용 전력반도체 : DSC(양면 냉각) 파워 모듈
- 2-5. Block Bonding 적용 전력반도체 : QFN 파워 모듈

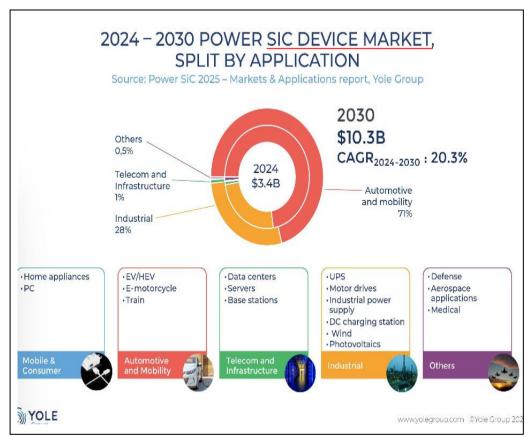
3. Product Portfolio

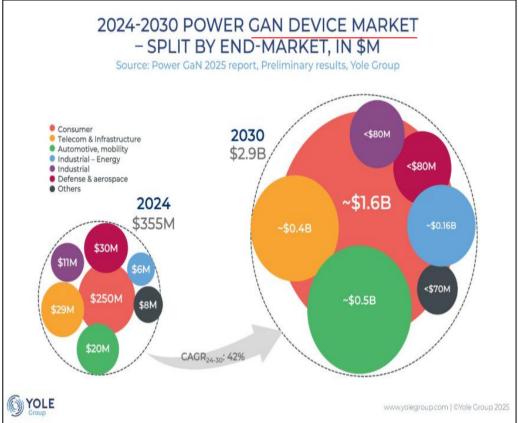
- 3-1. 저 열팽창 고방열 소재 기술
- 3-2. Product Lineup
- ① 5G 통신 ,우주항공, 레이더
- ② 차세대 전력반도체
- ③ 레이저 반도체
- ④ 신규 개발 제품

4. Growth Strategies

- 4-1. 턴어라운드 및 재무 목표
- 4-2. 양산 설비 및 Capa. 증설 계획
- 4-3. Product Roadmap

5. Summary




2-1. 세계 SiC·GaN 전력 반도체 시장 전망(2025~2030)

SiC·GaN 전력 반도체: 고성장 '확장기' 진입

반도체 종류	2024-2030 CAGR	2030년 시장 규모	핵심 성장 동력 및 특징
SiC	약 20.3%	약 \$10.3B	전기차 인버터·OBC, 데이터센터, 산업 드라이브 등
(실리콘 카바이드)		(13.7조 원)	고전압/고효율 시장 고성장 전망
GaN	약 42%	약 \$2.9B	AI 서버/통신 인프라, 고밀도 컨슈머, 산업 전원 등
(질화 갈륨)		(3.8조 원)	초고속 스위칭 제품 등 수요 확대

2-2. 전력반도체 냉각(방열) 최신 트렌드

냉각 트렌드의 대전환 : 원천 발열 최소화(Source-First Thermal)

- ※1. 고비용 저효율 냉각의 한계 → New Trend 니즈 확대
- ※2. EV 인버터·OBC, 데이터센터 전력변환, 산업 드라이브/UPS 수요 고성장

구분	Old : 고비용 & 저효율	New Trend ; KOSTEC 솔루션
냉각시스템	과도한 열을 외부 시스템으로 '억지로 식히는' 방식 (액체 냉각/액침 냉각 등)	원천 발열 자체를 저감하고 냉각 시스템 크기·비용을 획기적으로 축소
결과	시스템 복잡 및 TCO (총 소유 비용) 증가	시스템 경량화·단순화, TCO 절감

* UPS: Uninterruptible Power System(무정전 전원장치)

* TCO: Total cost of ownership(총 소유비용)

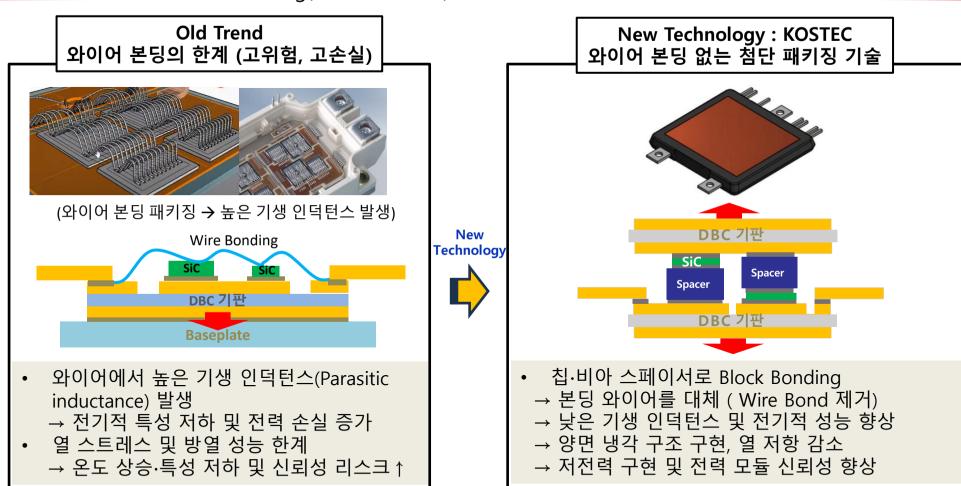
구분	전략 (열 발생원 제어)	당사 솔루션의 역할 : 효율 완성
① 열원 제어	고효율 WBG 반도체(SiC/GaN) 채택 → PSU 효율 98%+ 달성 → 발열 저감	스페이서로 Block Bonding(블록 본딩) → 전기적, 열적 안정성 완성 → 잠재성능 100% 발휘
② 냉각 혁신	냉각 최소화 → 국부 액체 냉각·공랭식 도입	와이어, 기생저항/인덕턴스 제거 → 열 저항 최소화 → 최종 효율 극대화

* PSU: Power Supply Unit(전원 공급 장치)

2-3. Block Bonding : 전력반도체 차세대 패키징 기술 표준

Block Bonding : Clip Bonding이 진화한 첨단 패키징 기술!

구분	Old Trend1 : Wire Bonding (Au/Al wire, ball/wedge Bonding)	Old Trend2 : Clip Bonding (Top-side Cu-clip attach)	New Standard : Block Bonding (No-Wire, thermal spacer : KOSTEC)
주요 구조	Chip	Cu-Clip	Cu-Block Cu-Block
	칩 ↔ 리드프레임을	칩 ↔ 리드프레임을	칩 ↔ 리드프레임/기판을
	가는 와이어로 연결	구리(Cu)클립으로 접합	금속 블록(스페이서)으로 접합
전기적 특성	기생 인덕턴스↑, 저항↑	인덕턴스 감소,루프 단축 한계	전류 루프 최단축, 저저항 유지
	→ 고속/고전압 불리	→ 고속 스위칭 적합(일부)	→ 전기적 손실 최소화
열 특성	열 경로 협소	구리 클립이 열 경로 역할	블록을 통한 대면적 열 전달
	→ Hot Spot 발생, 신뢰성 리스크↑	→ 열 분산 개선(한계 존재)	→ 열 전도 우수, 발열문제 근본 해결
신뢰성	열사이클에 의한	기계적 스트레스 증가	CTE 매칭 용이, 다이 크랙 방지 구조
	Lift-off, heel crack등 파손 위험	→ 평탄도·응력 관리 필요	→ 장기 신뢰성 우수
생산 비용	공정 성숙·저비용	와이어 본딩 대비 복잡 → 장비 투자 필요	소형 고정밀 가공/접합 기술 필요 → 저 비용 공법 개발 완료 → 대량 생산성 확보
주요 적용처	범용 반도체(IC, 메모리 등)	Si 전력반도체 (일부 SiC MOSFET, IGBT 모듈)	EV 인버터, AI 전원, 데이터 센터 , 고출력 UPS 등 고성능·고밀도 시장

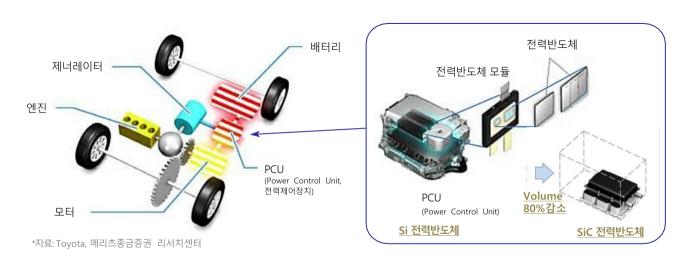

* CTE: Coefficient of Thermal Expansion(열 팽창계수)

2-4. Block Bonding 적용 전력반도체 : DSC(양면 냉각) 파워 모듈

Block Bonding(No Wire Bond)으로 더 높은 효율·저전력 구현!

※ 코스텍시스의 스페이서는 단순히 본딩 와이어만을 없애는 것이 아니라, Sic·GaN 반도체의 고전압·고주파 스위칭 특성에 최적화된 초저 인덕턴스와 열 안정성을 동시에 제공하는 핵심부품으로 차세대 전력반도체의 고효율·저전력·고신뢰성을 선도하는 혁신!

KOSTEC


※ 전기차의 SiC 전력반도체

Si 대비 SiC 전력 반도체 적용 시 배터리 효율 약 10% 개선

(단위: 억원)

Q 전기차에서 전력반도체의 역할: 배터리 전력을 모터 구동 전력으로 변환

(단위: 만 대)

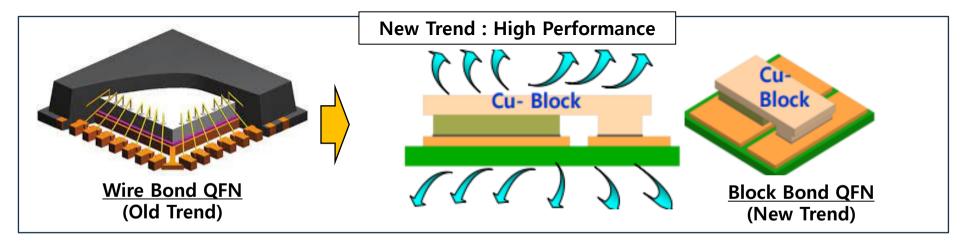
Q 세계 전기차 수요 전망

Q 세계 방열 Spacer 수요 전망

13,000 5,180 1,950 310 700 2020 2025 2030 *자료: 코스텍시스 자체 추정

방열 Spacer 시장 I 2030년 1조원이상 고 성장 예상 (전기차 1대당 Spacer가 약 60ea 정도 소요)

Q SiC 전력반도체 모듈과 스페이서(Spacer) 개요



K STEC

2-5. Block Bonding 적용 전력반도체 : QFN 파워 모듈

Wire Bonding에서 Block Bonding으로 글로벌 Top-tier 레퍼런스 확대 중!

모델	주요 특징	정격 전류	Key Advantages (기술적 우위)	제품 이미지
TPSM8287B30	고효율 파워 모듈 (컨버터·인덕터· 커패시터 일체형) 초소형 3.75*8 mm	30 A	No Bond Wire Cu Block Direct Attach (구리 블록 접합) 전류 루프 단축	
TPSM82866A	초저 기생 인덕턴스 고방열 패키지 스위칭 손실 감소, 전력 밀도·효율 향상 초소형 3.5*4 mm	6 A	기생 인덕턴스 최소화 열 성능 개선 (온도 하락, 열 분산 향상) 효율, 전력 밀도, 신뢰성 향상	# Texas muments

Table of Contents

1. Company Overview

- 1-1. Company Profile
- 1-2. Financial Summary
- 1-3. 최근 주요 이슈 사항

2. Market Trend

- 2-1. 세계 SiC, GaN 전력반도체 시장 전망(2025~2030)
- 2-2. 전력반도체 냉각(방열) 최신 트렌드
- 2-3. Block Bonding: 전력반도체 차세대 패키징 기술 표준
- 2-4. Block Bonding 적용 전력반도체 : DSC(양면 냉각) 파워 모듈
- 2-5. Block Bonding 적용 전력반도체 : QFN 파워 모듈

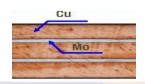
3. Product Portfolio

- 3-1. 저 열팽창 고방열 소재 기술
- 3-2. Product Lineup
- ① 5G 통신 ,우주항공, 레이더
- ② 차세대 전력반도체
- ③ 레이저 반도체
- ④ 신규 개발 제품

4. Growth Strategies

- 4-1. 턴어라운드 및 재무 목표
- 4-2. 양산 설비 및 Capa. 증설 계획
- 4-3. Product Roadmap

5. Summary

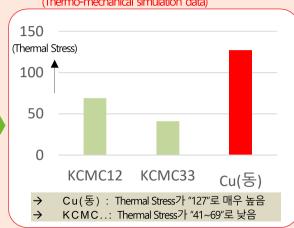


3-1. 저열팽창 고방열 소재 기술

파워 반도체용 써멀 매칭(Thermal Matching) 최적화 소재 기술, 글로벌 경쟁력 입증

O 저열팽창 고방열 소재 특성

KCMC® → KOSTEC Brand (상표등록 : 4020240019848), (특허등록 : 1014925220000,1024923060000)


Kostec Copper Molybdenum Composite

▶ SPS 확산 접합으로 Void가 없고 방열 특성 우수

Spark Plasma Sintering Hot Press (당사) (일본 경쟁사) VS

▶ 반도체 솔더링부 Thermal Stress

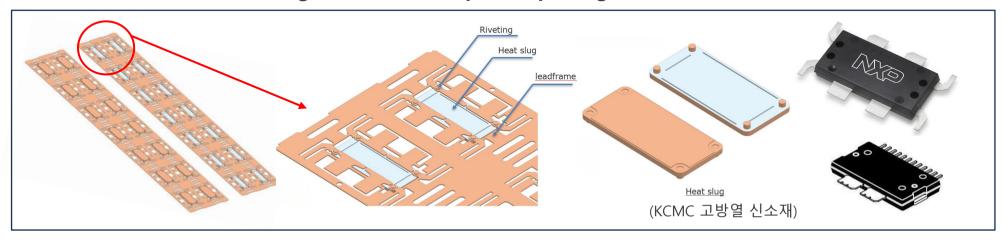
(Thermo-mechanical simulation data)

Material	Compositions	(vol %)	Layers	열팽창 계수	[ppm/°C]	열전도율 [W/(m.K)]25℃
acona.	Molybdenum	Copper	20,0.0	150℃	300℃	(Z-direction)
KCMC®12	12	88	5	11.05	9.01	320
KCMC®20	20	80	7	9.12	7.69	291
KCMC®28	28	72	5	8.83	7.57	263
KCMC®33	33	67	3	7.83	6.96	241
KCMC®40	40	60	5	7.34	6.59	222

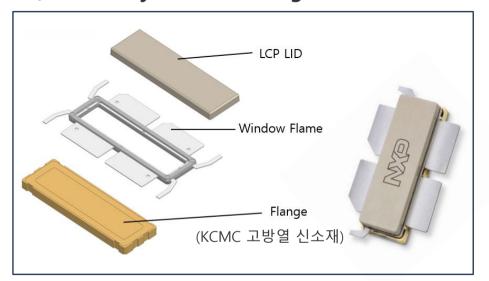
※ KCMC® 재료 특징: 열팽창계수는 적고 열전도율은 높으며, Thermal Stress가 낮음

3-2. Product Lineup

저열팽창·고방열 소재 기반의 글로벌 경쟁력 보유!



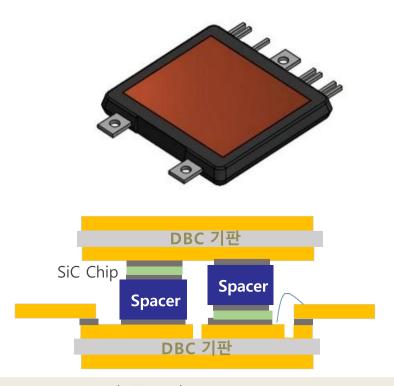
코스텍시스의 포트폴리오 안정적인 RF 매출 기반 + SiC 스페이서의 고성장 동력 혁신 신제품으로 미래 성장 가속


3-2 ① 5G 통신 ,우주항공, 레이더

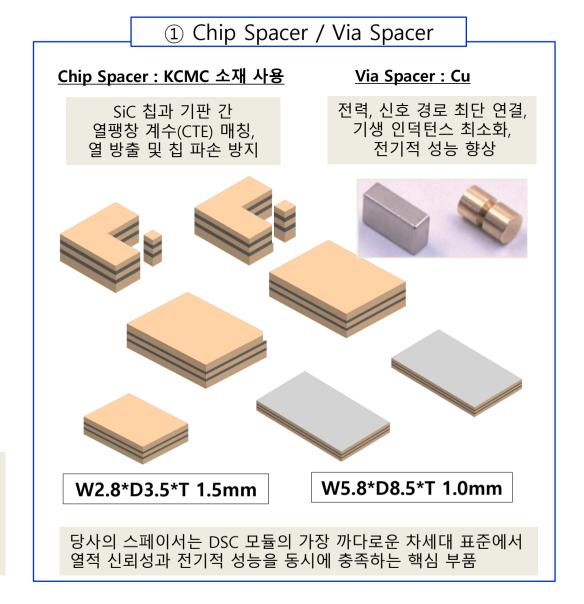
1) Leadframe with heat slugs (overmolded plastic package)

2) Air Cavity Plastic Package

3) Air Cavity Ceramic Package



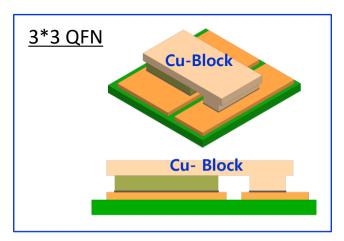
3-2 ②차세대 전력반도체

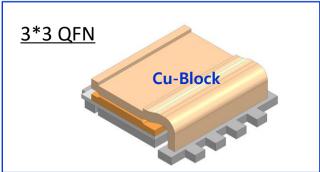

Block Bonding 적용 사례 : DSC(양면 냉각) 파워 모듈

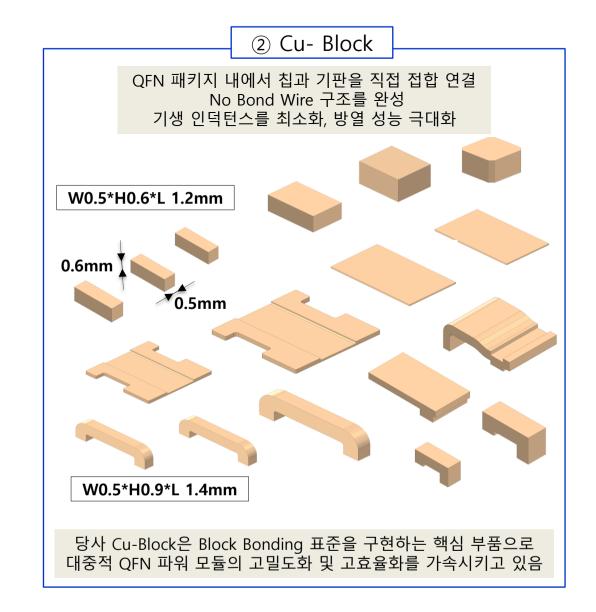
1) DSC(Double Side Cooling) 파워 모듈: 고효율·고밀도의 미래 표준

• DSC 구조의 중요성:

기존 단면 냉각(Single Side Cooling)의 한계를 넘어, 칩의 상하부 양면에서 열을 제거하는 구조. 이는 SiC 등 고발열 반도체의 전력 밀도와 효율을 극대화하는 최신 트렌드.

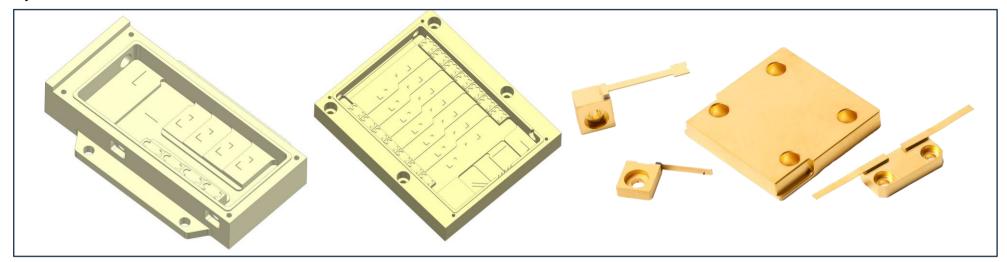



3-2 ②차세대 전력반도체

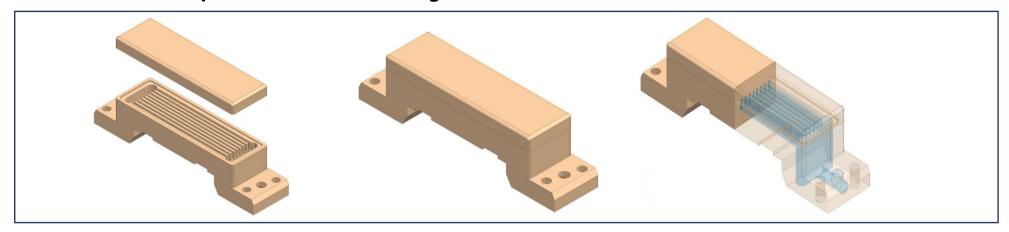

Block Bonding 적용 사례 : QFN 파워 모듈

2) QFN, Single Side 파워 모듈

- QFN 파워 모듈 : 소형, 고밀도, 고주파 스위칭에 유리한 QFN 패키지에 Block Bonding 기술 적용 하여 전기적/열적 성능을 극대화.
- AI 서버 PSU, 데이터 센터 등 높은 전력 밀도를 요구하는 분야에 빠르게 확산되는 추세

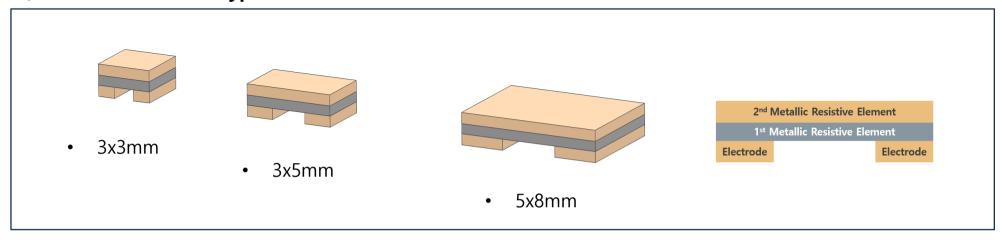


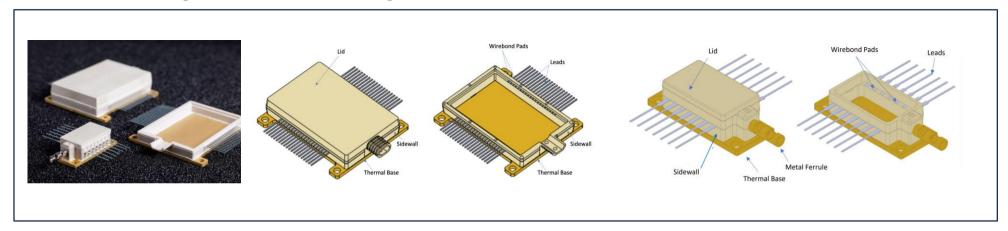
3-2 ③ 레이저 반도체



1) Power Laser Module PKG

2) 액체 냉각장치,Liquid Cold Plate, Cooling Block




3-2 ④ 신규 개발 제품

1) 전류 센서 , Vertical Type Shunt Resistor : 전기자동차, 파워 모듈, BMS등

2) Photonic Integrated Circuit Packages : 광통신,양자통신 등

Table of Contents

1. Company Overview

- 1-1. Company Profile
- 1-2. Financial Summary
- 1-3. 최근 주요 이슈 사항

2. Market Trend

- 2-1. 세계 SiC, GaN 전력반도체 시장 전망(2025~2030)
- 2-2. 전력반도체 냉각(방열) 최신 트렌드
- 2-3. Block Bonding: 전력반도체 차세대 패키징 기술 표준
- 2-4. Block Bonding 적용 전력반도체 : DSC(양면 냉각) 파워 모듈
- 2-5. Block Bonding 적용 전력반도체 : QFN 파워 모듈

3. Product Portfolio

- 3-1. 저 열팽창 고방열 소재 기술
- 3-2. Product Lineup
- ① 5G 통신 ,우주항공, 레이더
- ② 차세대 전력반도체
- ③ 레이저 반도체
- ④ 신규 개발 제품

4. Growth Strategies

- 4-1. 턴어라운드 및 재무 목표
- 4-2. 양산 설비 및 Capa. 증설 계획
- 4-3. Product Roadmap

5. Summary

4. Growth Strategy

2026년 1분기 흑자 전환, 구조적 도약 단계 진입!

4-1. 턴어라운드 및 재무 목표

항목	내용	비고
재무 목표	2026년 1분기부터 실질적인 턴어라운드 (흑자 전환) 달성 목표	스페이서 매출 본격화 2025년 12월 시설 투자 완료
스페이서 매출 성장	2024년 4억 원 → 2025년 20억 원 예상	2025년 하반기부터 글로벌 고객사向 양산 공급 개시
수익성 강화	스페이서 매출 본격화로 영업이익률 큰폭 증가 예상	흑자 전환 이후 주주환원 정책(배당) 우선 검토

4-2. 양산 설비 및 Capa. 증설 계획

구분	2024년 상반기	2025년 하반기	2026년 상반기	2027년 하반기	진행 상황
소재 Capa (전공정)	48,000	96,000	←	143,000	2025년 증설 완료 : Spacer 대량 생산 능력 확보
가공 Capa (후공정)	3,000	43,000 (1차 증설 : 2025.12확정)	85,000 (2차 증설 : 2026.3 확정)	120,000 (3차 증설 : 2027.1 계획)	신공장 매입 완료 →선제적 공간 확보, 수주 상황에 따라 Capa. 증설, 유연 대응

(단위 : 1,000pcs)

4. Growth Strategy

4-3. Product Roadmap

MP : Mass production , GC : Global customer

	•
•	,

(기획

수직형 전류센서	2 nd Metallic Resistive Element 1 th Metallic Resistive Element Electrode Electrode	개발 중 →	시제품 공급 → MP GC6	EV, BMS (배터리 관 리시스템)
실리콘 포토닉스 패키지		시제품 공급 중 →	MP GC5	광통신, 양자통신
SiC 전력반도체 스페이서	DBC 71€ Cu- Block DBC 71€	MP GC2	MP GC3	전기차, AI 전력모듈, 데이터센터
RF 통신용 패키지	LCP LID Window Fir Flange	MP MACOM.	MP GC1	5G/6G 통신, 레이더
제품 군	제품 형상	2025년 목표	2026년 목표	핵심 시장

- ① 2026년 1분기 스페이서 본격 양산 → 턴어라운드(흑자 전환) 및 고수익 창출
 ② 2027년 상반기 신제품 런칭(실리콘 포토닉스, 전류센서) Launching → 중장기 고성장 가속화

5. Summary

KOSTEC, 턴어라운드 및 성장 가속화!

No	항목	Key Points	비고
1.	기술 혁신 : New Standard	원천 발열 최소화(Source-First Thermal) : 냉각 비용, 시스템 복잡성, TCO 구조적 절감 시장의 새로운 표준 및 채택 가속	차세대 전력반도체 상용화 니즈 증가 및 필수 부품 지위 확보
2.	솔루션 독점 우위	스페이서 + 블록 본딩 : 와이어 본딩 제거로 기생 인덕턴스 ↓, 열저항 ↓ 효율·신뢰성 극대화 (차세대 SiC/GaN 성능 완성)	SiC/GaN 시장 성장의 기술적 병목 해소
3.	양산 경쟁력	메가팹 구축(PPMF) : Power Package MegaFab(Spacer & Block) 구축 가동률 레버리지로 고수익성 기반 확보 (Scale-up 준비 완료)	규모의 경제를 통한 고마진 구조 실현
4.	성장 로드맵	Capa/고객 로드맵 : '25년 하반기 양산 본격화, '27년 신제품 Launching 으로 성장 가시성 제고	단기 턴어라운드와 중장기 성장 동력 확보
5.	미래 비전	지배구조 안정화 + 재무 턴어라운드 : 2026년 Q1 흑자 전환, 주주환원 기반 확립	안정적 거버넌스·현금흐름 기반의 지속적 주주 가치 제고

감사합니다

Innovation in Heat, Power, and Performance

Investor Relations 2025

인천광역시 남동구 남동서로 261 남동공단 20B-5L (21634) T. 032-821-0162 F. 032-822-4923

www.kostec.net